Generate the Bioenergetic Scope Plot
Usage
bioscope_plot(
energetics,
model = "ols",
error_bar = "ci",
conf_int = 0.95,
size = 2,
basal_shape = 1,
max_shape = 19,
group_label = "Experimental Group",
sep_reps = FALSE,
ci_method = "Wald"
)
Arguments
- energetics
A table of calculated glycolysis and OXPHOS rates. Returned by
get_energetics
- model
The linear model used to estimate mean and confidence intervals: ordinary least squares (
"ols"
) or mixed-effects ("mixed"
)- error_bar
Whether to plot error bars as standard deviation (
"sd"
) or confidence intervals ("ci"
)- conf_int
The confidence interval percentage. Should be between 0 and 1
- size
Size of the points
- basal_shape
Shape of the points for basal values
- max_shape
Shape of the points for max values
- group_label
Label for the experimental group to populate the legend title
- sep_reps
Whether to calculate summary statistics on the groups with replicates combined. The current default
FALSE
combines replicates, but future releases will default toTRUE
providing replicate-specific summaries.- ci_method
The method used to compute confidence intervals for the mixed-effects model:
"Wald"
,"profile"
, or"boot"
passed tolme4::confint.merMod()
.- bioscope_plot
Creates a 2D plot visualizing the mean and standard deviation basal and maximal ATP production from glycolysis and OXPHOS for each experimental group
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics <- get_energetics(
partitioned_data,
ph = 7.4,
pka = 6.093,
buffer = 0.1
)
bioscope_plot(energetics, sep_reps = FALSE)
# to change fill, the geom_point shape should be between 15 and 20.
# These shapes are filled without border and will correctly show on the legend.
bioscope_plot(
energetics,
sep_reps = TRUE,
size = 3,
basal_shape = 2,
max_shape = 17 # empty and filled triangle
) +
ggplot2::scale_fill_manual(
values = c("#e36500", "#b52356", "#3cb62d", "#328fe1")
)
# to change color, use ggplot2::scale_color_manual
bioscope_plot(energetics, sep_reps = FALSE) +
ggplot2::scale_color_manual(
values = c("#e36500", "#b52356", "#3cb62d", "#328fe1")
)