Get mean and confidence intervals from energetics mixed-effects models
Source:R/energetics.R
energetics_lme_summary.Rd
Runs linear mixed-effects models on the ATP measure columns from
get_energetics
with replicates as the random-effect. Estimates mean and
confidence intervals for ATP production from glycolysis and OXPHOS at points
defined in partition_data
Arguments
- atp_col
The column name of the ATP measure - one of "ATP_basal_resp", "ATP_max_resp", "ATP_basal_glyc", "ATP_max_glyc"
- energetics
a data.table of Seahorse OCR and ECAR rates (from
get_energetics
)- conf_int
The confidence interval percentage. Should be between 0 and 1
- ci_method
The method used to compute confidence intervals for the mixed-effects model:
"Wald"
,"profile"
, or"boot"
passed tolme4::confint.merMod()
.
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics <- get_energetics(
partitioned_data,
ph = 7.4,
pka = 6.093,
buffer = 0.1
)
# Only for one column. For the full energetics table run
# `get_energetics_summary` with `model = "mixed"`.
energetics_lme_summary(
"ATP_max_resp",
energetics,
conf_int = 0.95,
ci_method = "Wald"
)
#> exp_group ATP_max_resp.mean ATP_max_resp.higher_bound
#> <char> <num> <num>
#> 1: Group_1 1141.1589 1169.8792
#> 2: Group_2 1193.9108 1230.4585
#> 3: Group_3 1350.6716 1387.2193
#> 4: Group_4 620.7805 658.1142
#> ATP_max_resp.lower_bound
#> <num>
#> 1: 1112.4385
#> 2: 1157.3631
#> 3: 1314.1239
#> 4: 583.4467