Estimates mean and standard deviation of energetics or rates with replicates as the random-effect
Arguments
- data_col
The column name of the ATP measure ("ATP_basal_resp", "ATP_max_resp", "ATP_basal_glyc", "ATP_max_glyc") or rate measure ("OCR", "ECAR")
- input
The dataset containing
data_col
fromget_energetics
orread_data
- group_colname
The column containing experimental group names
- rep_colname
The column containing replicate IDs
Value
an lme4::lmer
mixed effects model
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics <- get_energetics(partitioned_data, ph = 7.4, pka = 6.093, buffer = 0.1)
fit_lme("ATP_max_glyc", energetics)
#> boundary (singular) fit: see help('isSingular')
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: ATP_max_glyc ~ exp_group + (1 | replicate)
#> Data: input
#> REML criterion at convergence: 1014.011
#> Random effects:
#> Groups Name Std.Dev.
#> replicate (Intercept) 0.00
#> Residual 71.61
#> Number of obs: 92, groups: replicate, 2
#> Fixed Effects:
#> (Intercept) exp_groupGroup_2 exp_groupGroup_3 exp_groupGroup_4
#> 470.7 462.9 371.2 149.0
#> optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings