Calculate ATP Production Mean and Standard Deviation
Source:R/energetics.R
get_energetics_summary.Rd
Calculates mean and standard deviation of ATP production from glycolysis and
OXPHOS at points defined in partition_data
and with values calculated
using the get_energetics
function via ordinary least squares or a
mixed-effects model
Usage
get_energetics_summary(
energetics,
model = "ols",
error_metric = "ci",
conf_int = 0.95,
sep_reps = FALSE,
ci_method = "Wald"
)
Arguments
- energetics
a data.table of Seahorse OCR and ECAR rates (from
get_energetics
)- model
The model used to estimate mean and confidence intervals: ordinary least squares (
"ols"
) or mixed-effects ("mixed"
)- error_metric
Whether to calculate error as standard deviation (
"sd"
) or confidence intervals ("ci"
)- conf_int
The confidence interval percentage. Should be between 0 and 1
- sep_reps
Whether to calculate summary statistics on the groups with replicates combined. The current default
FALSE
combines replicates, but future releases will default toTRUE
providing replicate-specific summaries.- ci_method
The method used to compute confidence intervals for the mixed-effects model:
"Wald"
,"profile"
, or"boot"
passed tolme4::confint.merMod()
.
Details
To get the means and confidence intervals for experiments with replicates,
users can either use sep_reps = TRUE
to get replicate-level summary
statistics or set model = "mixed"
to use a linear mixed-effects model on
with replicate as the random-effect. The confidence intervals are generated
using confint(method = "Wald")
.
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics_list <- get_energetics(
partitioned_data,
ph = 7.4,
pka = 6.093,
buffer = 0.1
)
energetics_summary <- get_energetics_summary(energetics_list, sep_reps = FALSE)
head(energetics_summary[, c(1:5)], n = 10)
#> Key: <exp_group>
#> exp_group count ATP_basal_resp.mean ATP_basal_resp.sd ATP_basal_resp.se
#> <fctr> <int> <num> <num> <num>
#> 1: Group_1 22 1100.0468 72.25935 15.405746
#> 2: Group_2 24 1136.0653 41.34070 8.438635
#> 3: Group_3 24 1317.1044 52.53006 10.722653
#> 4: Group_4 22 626.1267 85.60314 18.250651
head(energetics_summary[, c(1, 2, 6, 7)], n = 10)
#> Key: <exp_group>
#> exp_group count ATP_basal_resp.lower_bound ATP_basal_resp.higher_bound
#> <fctr> <int> <num> <num>
#> 1: Group_1 22 1069.8521 1130.2415
#> 2: Group_2 24 1119.5259 1152.6047
#> 3: Group_3 24 1296.0883 1338.1204
#> 4: Group_4 22 590.3561 661.8973