Reads input seahore data from an excel Seahorse Wave File. It assumes your data is background normalized.
Usage
read_data(
rep_list,
norm = NULL,
sheet = 2,
delimiter = " ",
norm_column = "exp_group",
norm_method = "minimum"
)
Arguments
- rep_list
A list of Seahorse Wave excel export files. One file per replicate. If your data is in a directory called "seahorse_data", use
list.files("seahorse_data", pattern = "*.xlsx", full.names = TRUE)
to make a list of the excel files. Add multiple replicates with care - see details.- norm
A csv file with the experimental groups and their normalization values. Leave unset if normalization is not required. See
normalize()
.- sheet
The number of the excel sheet containing the long-form Seahorse data. Default is 2 because the long-form output from Seahorse Wave is on sheet 2
- delimiter
The delimiter between the group name and the assay type in the Group column of the wave output. e.g. "Group1 MITO" would use a space character as delimiter.
- norm_column
Whether to normalize by
"Well"
or"exp_group"
column. The first column of the normalization csv provided should match this value.- norm_method
How to normalize each well or experimental group (specified by
norm_column
):by its corresponding row in the
norm
csv ("self"
) orby the minimum of the
measure
column in the providednorm
csv ("minimum"
).
See the
normalize()
function for more details.
Details
Although ceas enables integration of multiple biological and/or technical replicates, previous work has reported high inter-plate variation (Yepez et. al 2018). If you don't want your replicate data combined, you can either:
make sure that the names of the common groups between the replicates are different.
in downstream analyses (
get_energetics_summary
,bioscope_plot
,rate_plot
,atp_plot
), usesep_reps = TRUE
to do all calculations and plotting separately for each replicate.
NOTE: to maintain backwards compatibility sep_reps
is currently
FALSE
by default, but will be set to TRUE
in a future release.
References
Yépez et al. 2018 OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer PLOS ONE 2018;13:e0199938. doi:10.1371/journal.pone.0199938
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
head(seahorse_rates, n = 10)
#> Measurement Well Time OCR ECAR PER exp_group
#> <num> <char> <num> <num> <num> <num> <char>
#> 1: 1 A01 1.304765 0.0000 0.00000 0.0000 Background
#> 2: 1 A02 1.304765 305.2426 30.64529 334.4771 Group_1
#> 3: 1 A03 1.304765 307.9862 33.27668 358.4754 Group_1
#> 4: 1 A04 1.304765 339.3399 49.17751 503.4910 Group_2
#> 5: 1 A05 1.304765 321.9398 47.94602 492.2597 Group_2
#> 6: 1 A06 1.304765 323.7962 46.84232 482.1940 Group_2
#> 7: 1 A07 1.304765 379.1455 46.81741 481.9668 Group_3
#> 8: 1 A08 1.304765 391.1478 50.14648 512.3280 Group_3
#> 9: 1 A09 1.304765 393.4523 52.54649 534.2160 Group_3
#> 10: 1 A10 1.304765 217.0543 29.11793 320.5476 Group_4
#> assay_type replicate
#> <char> <fctr>
#> 1: <NA> 1
#> 2: MITO 1
#> 3: MITO 1
#> 4: MITO 1
#> 5: MITO 1
#> 6: MITO 1
#> 7: MITO 1
#> 8: MITO 1
#> 9: MITO 1
#> 10: MITO 1
# normalization by well using raw cell count or protein quantity
norm_csv <- system.file("extdata", package = "ceas") |>
list.files(pattern = "well_norm.csv", full.names = TRUE)
seahorse_rates.norm <- read_data(
rep_list,
norm = norm_csv,
norm_column = "well",
norm_method = "self",
sheet = 2
)
head(seahorse_rates.norm, n = 10)
#> Measurement Well Time OCR ECAR PER exp_group
#> <num> <char> <num> <num> <num> <num> <char>
#> 1: 1 A01 1.304765 0.00000000 0.000000000 0.00000000 Background
#> 2: 1 A02 1.304765 0.06104851 0.006129059 0.06689542 Group_1
#> 3: 1 A03 1.304765 0.05599749 0.006050306 0.06517735 Group_1
#> 4: 1 A04 1.304765 0.06402640 0.009278776 0.09499830 Group_2
#> 5: 1 A05 1.304765 0.07154218 0.010654670 0.10939105 Group_2
#> 6: 1 A06 1.304765 0.05488070 0.007939376 0.08172779 Group_2
#> 7: 1 A07 1.304765 0.08425456 0.010403869 0.10710374 Group_3
#> 8: 1 A08 1.304765 0.06984781 0.008954729 0.09148714 Group_3
#> 9: 1 A09 1.304765 0.06668683 0.008906184 0.09054508 Group_3
#> 10: 1 A10 1.304765 0.04095365 0.005493950 0.06048068 Group_4
#> assay_type replicate
#> <char> <fctr>
#> 1: <NA> 1
#> 2: MITO 1
#> 3: MITO 1
#> 4: MITO 1
#> 5: MITO 1
#> 6: MITO 1
#> 7: MITO 1
#> 8: MITO 1
#> 9: MITO 1
#> 10: MITO 1