Reads input seahore data from an excel Seahorse Wave File. It assumes your data is background normalized.
Usage
read_data(
rep_list,
norm = NULL,
sheet = 2,
delimiter = " ",
norm_column = "exp_group",
norm_method = "minimum"
)Arguments
- rep_list
A list of Seahorse Wave excel export files. One file per replicate. If your data is in a directory called "seahorse_data", use
list.files("seahorse_data", pattern = "*.xlsx", full.names = TRUE)to make a list of the excel files. Add multiple replicates with care - see details.- norm
A csv file with the experimental groups and their normalization values. Leave unset if normalization is not required. See
normalize().- sheet
The number of the excel sheet containing the long-form Seahorse data. Default is 2 because the long-form output from Seahorse Wave is on sheet 2
- delimiter
The delimiter between the group name and the assay type in the Group column of the wave output. e.g. "Group1 MITO" would use a space character as delimiter.
- norm_column
Whether to normalize by
"Well"or"exp_group"column. The first column of the normalization csv provided should match this value.- norm_method
How to normalize each well or experimental group (specified by
norm_column):by its corresponding row in the
normcsv ("self") orby the minimum of the
measurecolumn in the providednormcsv ("minimum").
See the
normalize()function for more details.
Details
Although ceas enables integration of multiple biological and/or technical replicates, previous work has reported high inter-plate variation (Yepez et. al 2018). If you don't want your replicate data combined, you can either:
make sure that the names of the common groups between the replicates are different.
in downstream analyses (
get_energetics_summary,bioscope_plot,rate_plot,atp_plot), usesep_reps = TRUEto do all calculations and plotting separately for each replicate.
NOTE: to maintain backwards compatibility sep_reps is currently
FALSE by default, but will be set to TRUE in a future release.
References
Yépez et al. 2018 OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer PLOS ONE 2018;13:e0199938. doi:10.1371/journal.pone.0199938
Examples
rep_list <- system.file("extdata", package = "ceas") |>
list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
head(seahorse_rates, n = 10)
#> Measurement Well Time OCR ECAR PER exp_group
#> <num> <char> <num> <num> <num> <num> <char>
#> 1: 1 A01 1.304765 0.0000 0.00000 0.0000 Background
#> 2: 1 A02 1.304765 305.2426 30.64529 334.4771 Group_1
#> 3: 1 A03 1.304765 307.9862 33.27668 358.4754 Group_1
#> 4: 1 A04 1.304765 339.3399 49.17751 503.4910 Group_2
#> 5: 1 A05 1.304765 321.9398 47.94602 492.2597 Group_2
#> 6: 1 A06 1.304765 323.7962 46.84232 482.1940 Group_2
#> 7: 1 A07 1.304765 379.1455 46.81741 481.9668 Group_3
#> 8: 1 A08 1.304765 391.1478 50.14648 512.3280 Group_3
#> 9: 1 A09 1.304765 393.4523 52.54649 534.2160 Group_3
#> 10: 1 A10 1.304765 217.0543 29.11793 320.5476 Group_4
#> assay_type replicate
#> <char> <fctr>
#> 1: <NA> 1
#> 2: MITO 1
#> 3: MITO 1
#> 4: MITO 1
#> 5: MITO 1
#> 6: MITO 1
#> 7: MITO 1
#> 8: MITO 1
#> 9: MITO 1
#> 10: MITO 1
# normalization by well using raw cell count or protein quantity
norm_csv <- system.file("extdata", package = "ceas") |>
list.files(pattern = "well_norm.csv", full.names = TRUE)
seahorse_rates.norm <- read_data(
rep_list,
norm = norm_csv,
norm_column = "well",
norm_method = "self",
sheet = 2
)
head(seahorse_rates.norm, n = 10)
#> Measurement Well Time OCR ECAR PER exp_group
#> <num> <char> <num> <num> <num> <num> <char>
#> 1: 1 A01 1.304765 0.00000000 0.000000000 0.00000000 Background
#> 2: 1 A02 1.304765 0.06104851 0.006129059 0.06689542 Group_1
#> 3: 1 A03 1.304765 0.05599749 0.006050306 0.06517735 Group_1
#> 4: 1 A04 1.304765 0.06402640 0.009278776 0.09499830 Group_2
#> 5: 1 A05 1.304765 0.07154218 0.010654670 0.10939105 Group_2
#> 6: 1 A06 1.304765 0.05488070 0.007939376 0.08172779 Group_2
#> 7: 1 A07 1.304765 0.08425456 0.010403869 0.10710374 Group_3
#> 8: 1 A08 1.304765 0.06984781 0.008954729 0.09148714 Group_3
#> 9: 1 A09 1.304765 0.06668683 0.008906184 0.09054508 Group_3
#> 10: 1 A10 1.304765 0.04095365 0.005493950 0.06048068 Group_4
#> assay_type replicate
#> <char> <fctr>
#> 1: <NA> 1
#> 2: MITO 1
#> 3: MITO 1
#> 4: MITO 1
#> 5: MITO 1
#> 6: MITO 1
#> 7: MITO 1
#> 8: MITO 1
#> 9: MITO 1
#> 10: MITO 1
