Skip to contents

Calculates mean and standard deviation of ATP production from glycolysis and OXPHOS at points defined in partition_data and with values calculated using the get_energetics function

Usage

get_energetics_summary(energetics, error_metric = "ci", conf_int = 0.95)

Arguments

energetics

a data.table of Seahorse OCR and ECAR rates (from get_energetics)

error_metric

Whether to calculate error as standard deviation ("sd") or confidence intervals ("ci")

conf_int

The confidence interval percentage. Should be between 0 and 1

Value

a list of groups from the data

Examples

rep_list <- system.file("extdata", package = "ceas") |>
  list.files(pattern = "*.xlsx", full.names = TRUE)
seahorse_rates <- read_data(rep_list, sheet = 2)
partitioned_data <- partition_data(seahorse_rates)
energetics_list <- get_energetics(partitioned_data, ph = 7.4, pka = 6.093, buffer = 0.1)
energetics_summary <- get_energetics_summary(energetics_list)
head(energetics_summary[, c(1:5)], n = 10)
#> Key: <exp_group>
#>    exp_group count ATP_basal_resp.mean ATP_basal_resp.sd ATP_basal_resp.se
#>       <fctr> <int>               <num>             <num>             <num>
#> 1:   Group_1    22           1100.0468          72.25935         15.405746
#> 2:   Group_2    24           1136.0653          41.34070          8.438635
#> 3:   Group_3    24           1317.1044          52.53006         10.722653
#> 4:   Group_4    22            626.1267          85.60314         18.250651
head(energetics_summary[, c(1, 2, 6, 7)], n = 10)
#> Key: <exp_group>
#>    exp_group count ATP_basal_resp.lower_bound ATP_basal_resp.higher_bound
#>       <fctr> <int>                      <num>                       <num>
#> 1:   Group_1    22                  1069.8521                   1130.2415
#> 2:   Group_2    24                  1119.5259                   1152.6047
#> 3:   Group_3    24                  1296.0883                   1338.1204
#> 4:   Group_4    22                   590.3561                    661.8973